
Excalibur H&ES - FPGA Testbed Final Report

This project was designed to improve the use of FPGAs in HPC codes in research by supporting the use of
a novel testbed, including multiple FPGAs from different vendors, and providing software support for new
development or the porting of existing codes to FPGAs. This report details the development of the software
associated with the testbed.

Two major subprojects were chosen that allow a range of users effective access to FPGAs: a Markov Chain
Monte-Carlo (MCMC) application with wide-ranging applications in statistics, implemented on both the
FPGA and CPU for comparison, and an iterative solver library, providing simple access to cross-platform,
FPGA-optimised iterative solvers. Both pieces of software are considered functional but remain untested in
production research code. The expertise gained during the project informed the development of a well-received
workshop on introductory FPGA development.

1 Use-cases and Workshop
1.1 Markov Chain Monte-Carlo application
Markov Chain Monte-Carlo methods are widely used in scientific analysis as a form of parameter inference.
For a parameterised model, these methods calculate the posterior distribution of parameter values, given a
set of observed or computed data-points. They generally involve generating hundreds of thousands, or more,
samples from some parameter space; for each sample a (potentially costly) likelihood and prior function must
be evaluated. As is common in scientific applications, our likelihood function is modelled as a multivariate
Gaussian. The evaluation of this function has two potential bottlenecks, depending on the size of the matrices
involved: the generation of the covariance matrix from the covariance function (O(N2) in complexity, where
N is the number of data-points and the covariance matrix is N × N), and the solution to the matrix-vector
equation (O(N3)). This linear solver step, which includes a Cholesky decomposition, is therefore expected to
be the dominant factor for large matrices.

Development of the MCMC implementation was two-pronged: the CPU implementation using C++ with
an LAPACK back-end for matrix solver methods, and an FPGA implentation in C and C++, utilising the
Vitis HLS tools and methods from the Vitis libraries. There is also a python script for generating data for
test-cases.

The CPU and FPGA versions in many respects mirror one another, although the FPGA version diverges
considerably from the CPU code where necessary for optimisation. Presently, though both codes are working
correctly for test problems, the FPGA code lags behind the CPU implementation in performance. FPGA
implementation must be highly optimised to provide satisfactory performance due to the slow clock speed of
the FPGA (around six times slower than a typical CPU); potential problems currently being investigated
include under-utilisation of parallelisation or inefficient use of accesses to slower memory impeding efficient
pipelining. These improvements must be balanced with the availability of resources in the FPGA fabric,
particularly for large matrices where data may be forced into slower memory banks.

1.2 Iterative solver library
The iterative solver library was developed wholly in a novel, high-level, dataflow-focused extension to Python:
data-centric Python or DaCe. Iterative solvers were chosen specifically due to their wide-spread use in HPC
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and in multiple fields of science. Existing, lower-level implementations of solvers (including FPGA-specific
optimisations) informed the development of this higher-level, user-focused library. Challenges around learning
DaCe, still a new, developing technology, were somewhat ameliorated by the productivity gains provided
through the use of the high-level tool.

Two solvers were implemented: Jacobi and conjugate gradient. While these are not cutting edge iterative
solvers, they provide useful templates for other, more sophisticated solvers that may be added. The library
can be found in the dace_iterative_solvers GitHub repo.

1.3 Introductory FPGA Workshop
A workshop was run on 29th Sept 2022 and training materials can be found in the FPGA_Intro_Workshop
GitHub repository and fpga-workshop-hostside-material repository. This was targeted specifically at those
with significant HPC experience, but not necessarily with experience developing for any accelerators.

2 Review of tooling in FPGA development
2.1 Intel OpenCL and SYCL
In lieu of an Intel FPGA (which has been made available to us recently), the Intel FPGA devCloud provided
the integrated hardware & software platform to investigate Intel’s FPGA development environment. While
both OpenCL and SYCL are language extensions for use in programming heterogeneous systems, SYCL is
higher-level and generally more accessible.

The developers identified and underwent two training and development courses:

• Introduction to OpenCL for FPGAs on the Coursera MOOC platform
• Pre-recorded webinars and videos from Intel’s FPGA academic program

The Intel implementation of the SYCL specification, known as Data Parallel C++, is part of their OneAPI
project. In SYCL, the host and kernel code are typically written in the same C++ file, and compiled
together into a single executable. The platform detection routines are available as C++ APIs via the device
selector and command queue handler classes. The developer experience was that the overloaded methods in
these classes provided sufficient flexibility to implement arbitrary device-selection logic (e.g. a hierarchy of
preference of accelerators to use) with a clear, readable, and succinct syntax. As an alternative to manual
memory movement, SYCL2020 features Unified Shared Memory (USM) where any pointer allocated on the
host is also a valid pointer on the device. This is a useful tool in the porting of existing CPU/GPU SYCL
codes to FPGA architectures. Additionally, SYCL provides ways to interface with OpenCL, providing a clear
migration path for existing OpenCL codes.

The performance of SYCL against native hardware description languages or finely controlled OpenCL code
needs to be carefully evaluated, although its enhanced portability and more radid development cycle is
an attractive feature even if it requires some trade-off in performance. Overall, we believe that the SYCL
standard greatly lowers the accessibility barrier for FPGA computations. In general, OpenCL has seen poor
adoption in GPU programming, with Nvidia better supporting CUDA and AMD strongly supporting HIP.
While Intel have used OpenCL as their framework of choice for programming FPGAs, they appear to be
encouraging the use of SYCL instead. As a result we cannot recommend OpenCL as a future-proof framework
for heterogeneous computing.

2.2 Xilinx HLS
High Level Synthesis (HLS) is the framework used when developing higher level code for Xilinx FPGAs, as an
alternative to using hardware description languages such as VHDL. Code is instead written in C or C++ (with
some language restrictions) augmented with #pragma HLS statements, which is converted into a hardware
design by the Vitis compiler. This allows scientific programmers familiar with C++ to begin experimenting
with FPGAs with relative ease. The programmer can specify certain optimising transformations (e.g. loop
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pipelining or unrolling) or memory placements (e.g. DDR, URAM) using the #pragma statements; other
optimisations may be applied automatically by the compiler.

As mentioned above, the slow clock speeds of the FPGA mean that solutions must be strongly optimised
in order to see a benefit, and that not all problems will admit the degree of parallelisation necessary to
beat a CPU implementation. FPGA optimisation generally relies on pipelining data: individual elements
moving through a multi-step process one after the other in such a way that the second step of one element
overlaps with the first step of the next element. Perfect pipelining necessitates that the steps in this process
do not conflict by requiring the same resources. Changes within the code can cause unanticipated knock-on
effects, such as a change to the kind of memory to which a variable has been allocated, which can then
drastically change the efficiency of a pipeline and necessitate changes to the parallelisation. Furthermore,
because the resources on any given device differ, solutions may need to be significantly modified to achieve
peak performance on different devices.

Developing efficient code can be aided by using the Vitis HLS GUI application, which allows one to analyse
compiled hardware emulations of one’s code. This can include estimates of latency, iteration intervals (crucial
for pipelining), and, perhaps most importantly, error inducing problems such as timing violations which will
cause the hardware solution to fail. Changes to the code can be implemented at this stage, and the effect
on the solution (for example, how many calculations are done in parallel) can be confirmed and visualised.
The tool also provides guidance for some problems that is is able to identify automatically, which can be
particularly helpful for new developers.

Drawbacks to development using HLS include the restriction to Xilinx devices, and a generally steep learning
curve. Although the tools allow software developers to use C++ to develop their solutions, the development
of efficient code for FPGAs still requires gaining understanding of an architecture which is very different from
common CPU and GPU architectures. The connection between the software code and the final hardware
product can be obscured by the high level approach and degree of automation. Xilinx provides tutorials and
documentation for their tool set, but these tend not to feel comprehensive for a beginner, and error messages
from the compiler can appear opaque and confusing for new users. Lengthy compilation times, ranging
from tens of minutes for harware emulation to many hours for the full hardware solution, are a barrier to
experimentation. It is also worth bearing in mind that the Vitis libraries provided by Xilinx, even in their
most up to date versions, can themselves cause errors through timing violations or deprecated statements,
and thus cannot necessarily be relied upon as an external resource without modification and re-packaging
with your solution.

2.3 Dace
DaCe was chosen as a significantly higher-level tool than the Xilinx HLS software stack used to develop
the MCMC code. This allows the team to compare general ease-of-use with alternative software stacks and
provides useful experience which informed the development of the training materials. Additionally, DaCe
targets both Intel and Xilinx FPGAs, allowing direct performance comparison using a single source. The
framework translates annotated Python code directly into HLS (for Xilinx devices) or OpenCL (for Intel)
and uses the vendor’s supplied toolchain to compile to hardware. As such, there is a negligible performance
penalty for using such a high-level tool, at least in reported benchmarks. Indeed, it is possible to extract
the translated (and optimised) low-level code and use that as the basis for further lower-level development
and optimisation. Given the high barrier to entry of traditional FPGA development environments (even
those using higher-level abstractions than, for example, RTL or Verilog), DaCe’s code generation provides an
alternative way to learn a tricky-to-use software stack.

Initial use of DaCe has shown it to be much more user-friendly than lower-level FPGA development
environments, requiring less boilerplate code for similar functionality and performance. However, due to
DaCe being high-level and a relatively young project, it offers less flexibility and transparency. This may be
improved as the tool develops and we were in direct contact with the DaCe developers to provide feedback
and receive guidance. This proved very useful.

However, two of the major issues with current FPGA development is the long compilation times and difficulty
in optimisation, this difficulty further compounded by the long compilation times. While DaCe performs
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some auto-optimsation specifically targeting FPGAs, it ultimately uses the vendors’ software stacks and thus
cannot overcome the associated long compilation times.

3 Overall outcomes, challenges and recommendations for future
work

FPGAs are accelerators that offer a promising alternative to GPUs, both in terms of improved runtime
and improved energy efficiency. However, throughout this project we have been challenged with steep
learning curves associated with both the hardware architecture (which differs significantly from more common
architectures found in CPUs and GPUs) and the software stack, which has grown from tooling used typically
by electronic engineers and remains less accessible than equivalent tooling for other accelerators. We have
also found that FPGAs are particularly sensitive to implementation details, in that a poorly implemented or
unoptimised algorithm will run significantly slower than the equivalent algorithm on CPU. This is in contrast
to GPU development where a developer may still achieve some speedup over a CPU implementation even
with a relatively poor implementation. In short, a developer must have significant experience developing
and optimising FPGA codes to implement an algorithm that even matches the performance of a CPU
implementation.

This informs the first of our recommendations for future work: FPGA algorithm development should happen
at the library level and must be accessible through a simple interface, in much the same way that Numpy
(and similar GPU implementations CuPy, JAX and cuNumeric, to name a few) exposes extremely performant
algorithms through an accessible python interface. To avoid long compilation times, such libraries should
provide pre-built and pre-optimised builds targeting individual FPGAs, in a similar way to Nvidia’s suite
of CUDA libraries. This work has been started by Xilinx (as part of their Vitis libraries) and should be
continued to provide a comprehensive FPGA-accelerated numerical toolkit.

For developers who require more direct access to FPGA hardware that a higher-level interface can provide
(i.e. those who are developing codes using, for example, Vitis HLS or DaCe) up-to-date, accessible and
comprehensive tutorials and other training should be available. Introductory material is readily available,
for example in AMD/Xilinx’s introductory documentation or in dace’s tutorials) but we found some of the
more advanced material (e.g. guiding developers though optimisation techniques essential to the development
of performant FPGA codes) was confined to relatively inaccessible textbooks or research publications and
could be better packaged by vendors to improve discoverability and accessibility. The training resources
developed as part of this project were informed by our struggles getting started with FPGA development and
optimisation.

We feel it would be particularly effective to develop a series of hackathons (much like the GPU Hackathons)
allowing inexperienced developers to connect with experienced FPGA developers, share expertise and develop
FPGA ports of real-world applications.

4

https://github.com/Xilinx/Vitis_Libraries
https://docs.xilinx.com/r/2021.1-English/ug1399-vitis-hls/Introduction-to-Vitis-HLS
https://github.com/spcl/dace/tree/master/tutorials
https://www.gpuhackathons.org/

	Use-cases and Workshop
	Markov Chain Monte-Carlo application
	Iterative solver library
	Introductory FPGA Workshop

	Review of tooling in FPGA development
	Intel OpenCL and SYCL
	Xilinx HLS
	Dace

	Overall outcomes, challenges and recommendations for future work

